STGmarkerFinder.Rd
Use STG (stochastic gates) to select genes that separate each DA region from the rest of the cells. For a full description of the algorithm, see Y. Yamada, O. Lindenbaum, S. Negahban, and Y. Kluger. Feature selection using stochastic gates. arXiv preprint arXiv:1810.04247, 2018.
STGmarkerFinder(X, da.regions, da.regions.to.run = NULL, lambda = 1.5, n.runs = 5, return.model = T, python.use = "/usr/bin/python", GPU = "")
X | matrix, normalized expression matrix of all cells in the dataset, genes are in rows, rownames must be gene names |
---|---|
da.regions | output from the function getDAregion() |
da.regions.to.run | numeric (vector), which DA regions to run the marker finder, default is to run all regions |
lambda | numeric, regularization parameter that weights the number of selected genes, a larger lambda leads to fewer genes, default 1.5 |
n.runs | integer, number of runs to run the model, default 5 |
return.model | a logical value to indicate whether to return the actual model of STG |
python.use | character string, the Python to use, default "/usr/bin/python" |
GPU | which GPU to use, default '', using CPU |
a list of results:
a list of data.frame with markers for each DA region
a numeric vector showing mean accuracy for each DA region
a list of model for each DA region, each model contains:
features used to train the model
the selected features of the final run
the linear prediction value for each cell from the model