dyson_equalizer.examples module#

dyson_equalizer.examples.generate_X(m: int = 1000, n: int = 2000, seed: int = 123) ndarray[source]#

Generates a signal matrix with 10 strong principal values and 10 weak principal values.

Parameters:
m: int, optional

The number of rows (default=1000)

n: int, optional

The number of rows (default=2000)

seed: int, optional

The random seed (default=123)

Returns:
numpy.ndarray

The data matrix

dyson_equalizer.examples.generate_Y_with_almost_homoskedastic_noise(m: int = 1000, n: int = 2000, seed: int = 123) ndarray[source]#

Generates a test matrix with 10 strong principal values and 10 weak principal values.

The noise is homoskedastic except for the last 5 rows and columns where it is abnormally strong

Parameters:
m: int, optional

The number of rows (default=1000)

n: int, optional

The number of rows (default=2000)

seed: int, optional

The random seed (default=123)

Returns:
numpy.ndarray

The data matrix

See also

generate_X
dyson_equalizer.examples.generate_Y_with_heteroskedastic_noise(m: int = 1000, n: int = 2000, noise_dimensions: int = 10, seed: int = 123) ndarray[source]#

Generates a test matrix with 10 strong principal values and 10 weak principal values.

Parameters:
m: int, optional

The number of rows (default=1000)

n: int, optional

The number of rows (default=2000)

noise_dimensions: int, optional

The number of noise dimensions (default=10)

seed: int, optional

The random seed (default=123)

Returns:
numpy.ndarray

The data matrix

See also

generate_X